Allometric Models for Estimating Tree Biomass of Dryland Secondary Forest in East Halmahera

Isi Artikel Utama

Mujahidah Sylviari Zaenal Mujahidah
Tatang Tiryana Tatang
Muhdin Muhdin Muhdin

Abstrak

Biomass estimation of secondary forests is required to support the emission reduction of carbon dioxide through an enhancement of forest carbon stocks. Commonly, forest biomass is indirectly estimated using tree biomass allometric models that are developed based on a destructive sampling of sample trees. The availability of biomass allometric models for secondary forests in Indonesia is still limited, particularly for secondary forest ecosystems in eastern Indonesia. This study aimed to develop allometric biomass models for mixed-species trees in a secondary forest of East Halmahera, North Maluku, and to compare their accuracies with some other allometric biomass models that commonly used for estimating biomass of secondary forests. The tree biomass measurement was conducted by using a destructive sampling of 18 mixed-species trees (with diameter range of 5,4 – 36,9 cm) in a secondary forest. The samples of each tree component (stem, branch, twig, and leaf) were analyzed in a laboratory to determine the biomass of each sample tree. Allometric models were developed by using a non-linear regression analysis, which were then compared with other allometric models. This study revealed that the biomass of mixed-species trees in the study area could be estimated accurately using the M7 model that used diameter, height, and wood density variables. Such local allometric model was more accurate than other allometric models commonly used for estimating tropical forest biomass. Alternatively, the M3 model that used diameter and height variables could also be used when wood density data was not available. The local allometric models from this study can enrich the availability of biomass allometric models for secondary forest ecosystems in eastern Indonesia.

Rincian Artikel

Mujahidah , M. S. Z., Tatang , T. T., & Muhdin , M. M. (2020). Allometric Models for Estimating Tree Biomass of Dryland Secondary Forest in East Halmahera. Jurnal Wasian, 7(2), 87-101. https://doi.org/10.62142/4789vz68
Articles

Anitha, K., Verchot, L. V., Joseph, S., Herold, M., Manuri, S., & Avitabile, V. (2015). A review of forest and tree plantation biomass equations in Indonesia. Annals of Forest Science, 72(8), 981–997. https://doi.org/10.1007/s13595-015-0507-4

Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684–1694. https://doi.org/10.1016/j.foreco.2009.01.027

Brown, I. F., Martinelli, L. A., Thomas, W. W., Moreira, M. Z., Cid Ferreira, C. A., & Victoria, R. A. (1995). Uncertainty in the biomass of Amazonian forests: An example from Rondônia, Brazil. Forest Ecology and Management, 75(1), 175-189. https://doi.org/10.1016/0378-1127(94)03512-U

BSN. (2011). SNI 7725: 2011 Penyusunan Persamaan Alometrik untuk Penaksiran Cadangan Karbon Hutan Berdasar Pengukuran Lapangan (Ground Based Forest Carbon Accounting). Jakarta: Badan Standarisasi Indonesia (BSN).

Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach. New York: Springer-Verlag.

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629

Dutcă, I., McRoberts, R. E., Næsset, E., & Blujdea, V. N. B. (2019). A practical measure for determining if diameter (D) and height (H) should be combined into D2H in allometric biomass models. Forestry: An International Journal of Forest Research, 92(5), 627-634. https://doi.org/10.1093/forestry/cpz041

Ebuy, J., Lokombe, J., Ponette, Q., Sonwa, D., & Picard, N. (2011). Allometric equation for predicting aboveground biomass of three tree species. Journal of Tropical Forest Science, 23(2), 125–132.

Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., & Lloyd, J. (2011). Height-diameter allometry of tropical forest trees. Biogeosciences, 8(5), 1081–1106. https://doi.org/10.5194/bg-8-1081-2011

Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo Mendoza, A., & Phillips, O. L. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9(8), 3381–3403. https://doi.org/10.5194/bg-9-3381-2012

Flores, O., & Coomes, D. A. (2011). Estimating the wood density of species for carbon stock assessments. Methods in Ecology and Evolution, 2(2), 214–220. https://doi.org/10.1111/j.2041-210X.2010.00068.x

He, H., Zhang, C., Zhao, X., Fousseni, F., Wang, J., Dai, H., & Zuo, Q. (2018). Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLOS ONE, 13(1), e0186226. https://doi.org/10.1371/journal.pone.0186226

Henry, M., Besnard, A., Asante, W. A., Eshun, J., Adu-Bredu, S., Valentini, R., & Saint-André, L. (2010). Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, 260(8), 1375–1388. https://doi.org/10.1016/j.foreco.2010.07.040

Hunter, M., Keller, M., Vitoria, D., & Morton, D. (2013). Tree height and tropical forest biomass estimation. Biogeosciences, 10(12), 8385–8399. https://doi.org/10.5194/bg-10-8385-2013

Huy, B., Kralicek, K., Poudel, K. P., Phuong, V. T., Khoa, P. V., Hung, N. D., & Temesgen, H. (2016). Allometric equations for estimating tree aboveground biomass in evergreen broadleaf forests of Viet Nam. Forest Ecology and Management, 382, 193–205. https://doi.org/10.1016/j.foreco.2016.10.021

ICRAF. (2020). Tree functional attributes and ecological database: Wood density. Retrieved November 25, 2020, from World Agroforestry (ICRAF). http://db.worldagroforestry.org//wd

Ketterings, Q. M., Coe, R., van Noordwijk, M., Ambagau’, Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(1), 199–209. https://doi.org/10.1016/S0378-1127(00)00460-6

Krisnawati, H., Adinugroho, W. C., & Imanuddin, R. (2012). Monograf: Model-Model Alometrik untuk Pendugaan Biomassa Pohon pada Berbagai Tipe Ekosistem Hutan di Indonesia. Bogor: Pusat Penelitian dan Pengembangan Konservasi dan Rehabilitasi, Badan Penelitian dan Pengembangan Kehutanan.

Kusmana, C., Hidayat, T., Tiryana, T., Rusdiana, O., & Istomo. (2018). Allometric models for above- and below-ground biomass of Sonneratia spp. Global Ecology and Conservation, 15, e00417. https://doi.org/10.1016/j.gecco.2018.e00417

Kuyah, S., Dietz, J., Muthuri, C., Jamnadass, R., Mwangi, P., Coe, R., & Neufeldt, H. (2012). Allometric equations for estimating biomass in agricultural landscapes: I. Aboveground biomass. Agriculture, Ecosystems & Environment, 158, 216–224. https://doi.org/10.1016/j.agee.2012.05.011

Larjavaara, M., & Muller-Landau, H. C. (2013). Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution, 4(9), 793-801. https://doi.org/10.1111/2041-210X.12071

Magnussen, S., Kleinn, C., & Fehrmann, L. (2020). Wood volume errors from measured and predicted heights. European Journal of Forest Research, 139(2), 169–178. https://doi.org/10.1007/s10342-020-01257-9

MAP. (2018). RKUPHHK-HA dalam Hutan Alam pada Hutan Produksi Berbasis IHMB Periode Tahun 2018–2027. Jakarta: MAP (PT Mahakarya Agra Pesona).

Mardiatmoko, G., Kastanya, A., & Hatulesila, J. W. (2016). Persamaan allometrik pala (Myristica fragrans Houtt) untuk pendugaan biomassa atas tanah pada lahan agroforestri guna mendukung program REDD+ di Maluku. Jurnal Makila, 9(1), 97–107.

Maulana, S. I., & Pandu, J. (2011a). Persamaan-persamaan allometrik genera Instia sp. untuk pendugaan total biomassa atas tanah pada kawasan hutan tropis Papua. Jurnal Penelitian Sosial dan Ekonomi Kehutanan, 7(4), 275–284.

Maulana, S. I., & Pandu, J. (2011b). Persamaan-persamaan allometrik untuk pendugaan total biomassa atas tanah pada genera Pometia di kawasan hutan tropis Papua. Jurnal Penelitian Sosial dan Ekonomi Kehutanan, 8(4), 288–298.

MoEF. (2018). The State of Indonesia's Forests 2018. Jakarta: MoEF (Ministry of Environment and Forestry).

Molto, Q., Hérault, B., Boreux, J.-J., Daullet, M., Rousteau, A., & Rossi, V. (2014). Predicting tree heights for biomass estimates in tropical forests – a test from French Guiana. Biogeosciences, 11(12), 3121–3130. https://doi.org/10.5194/bg-11-3121-2014

Molto, Q., Rossi, V., & Blanc, L. (2013). Error propagation in biomass estimation in tropical forests. Methods in Ecology and Evolution, 4(2), 175–183. https://doi.org/10.1111/j.2041-210x.2012.00266.x

Picard, N., Saint-André, L., & Henry, M. (2012). Manual for Building Tree Volume and Biomass Allometric Equations: from Field Measurement to Prediction. Rome: FAO/CIRAD.

Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2020). nlme: Linear and Nonlinear Mixed Effects Models: R package version 3.1-148. Retrieved from https://CRAN.R-project.org/package=nlme

Puc-Kauil, R., Ángeles-Pérez, G., Valdéz-Lazalde, J., Reyes-Hernández, V., Dupuy-Rada, J., Schneider, L., . . . García-Cuevas, X. (2020). Allometric equations to estimate above-ground biomass of small-diameter mixed tree species in secondary tropical forests. [Allometric equations to estimate above-ground biomass of small-diameter mixed tree species in secondary tropical forests]. iForest - Biogeosciences and Forestry, 13(3), 165–174. https://doi.org/10.3832ifor3167-013

R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from URL https://www.R-project.org/

Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). Applied Regression Analysis: A Research Tool (Second ed.). New York: Springer.

Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. (2017). biomass: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163–1167. https://doi.org/10.1111/2041-210x.12753

Rutishauser, E., Noor’an, F., Laumonier, Y., Halperin, J., Rufi’ie, Hergoualc’h, K., & Verchot, L. (2013). Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia. Forest Ecology and Management, 307, 219–225. https://doi.org/10.1016/j.foreco.2013.07.013

Sanquetta, C. R., Dalla Corte, A. P., Behling, A., de Oliveira Piva, L. R., Péllico Netto, S., Rodrigues, A. L., & Sanquetta, M. N. I. (2018). Selection criteria for linear regression models to estimate individual tree biomasses in the Atlantic Rain Forest, Brazil. Carbon Balance and Management, 13(1), 25. https://doi.org/10.1186/s13021-018-0112-6

Sileshi, G. W. (2014). A critical review of forest biomass estimation models, common mistakes and corrective measures. Forest Ecology and Management, 329, 237–254. https://doi.org/10.1016/j.foreco.2014.06.026

Stas, S. M., Rutishauser, E., Chave, J., Anten, N. P. R., & Laumonier, Y. (2017). Estimating the aboveground biomass in an old secondary forest on limestone in the Moluccas, Indonesia: Comparing locally developed versus existing allometric models. Forest Ecology and Management, 389, 27–34. https://doi.org/10.1016/j.foreco.2016.12.010

Tiryana, T., Tatsuhara, S., & Shiraishi, N. (2011). Empirical models for estimating the stand biomass of teak plantations in Java, Indonesia. Journal of Forest Planning, 16(Special_Issue), 177–188. https://doi.org/10.20659/jfp.16.Special_Issue_177

van Breugel, M., Ransijn, J., Craven, D., Bongers, F., & Hall, J. S. (2011). Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management, 262(8), 1648–1657. https://doi.org/10.1016/j.foreco.2011.07.018

Zanne, A., Lopez-Gonzalez, G., Coomes, D., Ilic, J., Jansen, S., Lewis, S., & Chave, J. (2009). Global Wood Density Database. Retrieved from