Identification of Water Bacteria from Nickel Post Mining in East Halmahera
Main Article Content
Abstract
Nickel mining impact in heavy metal pollution on both soil and water. A method that is widely applied to reduce heavy metal contamination is bioremediation. Selection of bacteria that have potential reduction of heavy metal contamination in soil is very important in bioremediation process. The first step to select the potential bacteria is identification of samples. The purpose of this study is to identify existings bacteria in pond after nickel mining area PT. Antam, East Halmahera. Methods used in this research are isolation and identification of bacteria by conventional methods includes morphological, physiologica,l and biochemical test. Identification using Bergey’s Manual Determinative. The results showed there are 6 genera types of bacteria there are Bacillus, Esherichia, Enterococcus, Pseudomonas, Staphylococcus, dan Klebsiella, with 18 species in water of nickel post mining. Morphologically it is dominated by genus Bacillus as 50 % of the species. The identification of bacteria proved an existence of indigenous bacteria which is resistant to heavy metal stress.
Article Details
Copyright (c) 2018 Jurnal Wasian
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Alencar, F.S., Navoni, J.A., & do Amaral, V. S. (2017). The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: A systematic review. Environmental Science and Pollution Research, 24(20), 16545 - 59.
Almagro, V. M., Vivián, C. M., & Roldán, M. D. (2016). Biodegradation of cyanide wastes from mining and jewellery industries. Current Opinion in Biotechnology, 38, 9 - 13.
Banat, I. M., Makkar, R. S, Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53, 495−508.
Banerjee, G., Pandey, S., Ray, A. K., & Kumar, R. (2015). Bioremediation of heavy metals by a Novel Bacterial strain Enterobacter cloacae and Its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water, Air, & Soil Pollution, 226 (4), 91.
Cempel, M., & Nikel, G. (2006). Nickel: A Review of its sources and environmental toxicology. Polish Journal of Environmental Studies, 15(3), 375 - 82.
Ciszewski, D, Bijata, P., & Klimek, K. (2014). Reconstruction of post-mining attenuation of heavy metal pollution in sediment of the zlat Potok, Eastern Sudety Mts. Carpathian. Journal of Earth and Environmental Sciences, 9(4), 109 - 20.
Das, S., Ranjana, N., Misra, A. J., Suar, M., Mishra, A., Tamhankar, A J., Lundborg, C.S, & Tripathy, S. K. (2017). Disinfection of the water borne pathogens Escherichia coli and Staphylococcus aureus by solar photocatalysis using Sonochemically Synthesized Reusable Ag@ZnO Core-Shell Nanoparticles. International Journal of Environmental Research and Public Health, 14(747), 1 - 15.
Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. Journal of Hazardous Materials, 250 - 251. Elsevier B.V., 272 - 91.
Dutta, A, S., Ghosh, J.D., Mahansaria, R., Roy, M., Kumar Ghosh, A., Roychowdhury, T., & Mukherjee, J. (2017). Isolation of indigenous staphylococcus sciuri from chromium-contaminated paddy field and its application for reduction of Cr(VI) in rice plants cultivated in pots. Bioremediation Journal, 21(1) 30-37.
Focardi, S., Pepi, M., & Focardi, S. E. (2013). Microbial reduction of hexavalent chromium as a mechanism of detoxification and possible bioremediation applications. In Biodegradation - Life of Science, 321 - 347.
Holt, J. G, Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’s Manual of Determinative Bacteriology, 9th edn. Baltimore: Williams & Wilkins.
Kim, H. J, Kim, M. J., Turner, T. L., Kim, B. S, Song, K. M., Yi, S. H., & Lee, M. K. (2014). Pyrosequencing analysis of microbiota reveals that lactic acid bacteria are dominant in korean flat fish fermented food, Gajami-Sikhae. Bioscience, Biotechnology and Biochemistry, 7 (9), Taylor & Francis, 1611 - 1618.
Mani, D., & Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. International Journal of Environmental Science and Technology, 11(3), 843 - 72.
Mistry, K., Desai, C., Lal, S., Patel, K., & Patel, B. (2010). Hexavalent chromium reduction by Staphylococcus sp. isolated from Cr(Vi) contaminated land fill. International Journal of Biotechnology and Biochemistry, 6(1), 117 - 29.
Muhlis, S. G, Hemon, T., & Suaib. (2015). Exploration of plant adaptives at ferro-nickel post mining land in Pomalaa Southeast Sulawesi Indonesia. Advanced Studies in Biology, 7(3), 97- 109.
Mythili, K, & Karthikeyan, B. (2011). Bioremediation of chromium [ Cr ( VI )] in tannery effluent using Bacillus spp. and Staphylococcus spp. International Journal of Biotechnology, 2(5), 1460 - 63.
Nofiani, R., & Gusrizal. (2004). Bakteri resisten merkuri spektrum sempit dari daerah bekas penambangan emas tanpa izin ( PETI ) Mandor , Kalimantan Barat. Jurnal Natur Indonesia, 6(2), 67 - 74.
Paul, D., G. Pandey, Pandey, J., & Jain, R. K. (2005). Accessing microbial diversity for bioremediation and environmental restoration. Trends in Biotechnology, 23(3), 135 - 42.
Peix, A., Bahena, R., Helena, M., & Velázquez, E. (2018). The current status on the taxonomy of pseudomonas revisited: An update. Infection, Genetics and Evolution, 57, 106 - 116.
Sagar, S., Dwivedi, A., Yadav, S., Tripathi, M., & Kaistha, S. D. (2012). Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae Strain Cr11. Chemosphere, 86(8), 847 - 52.
Sayel, H., Bahafid, W., Joutey, N. T., Derraz, K., Benbrahim, K. F.,
Koraichi, S. I., & El Ghachtouli, N. (2012). Cr(VI) reduction by Enterococcus gallinarum isolated from tannery waste-contaminated soil. Annals of Microbiology, 62(3), 1269 - 1277.
Sharma, D., Ansari, M. J., Al-Ghamdi, A., Adgaba, N., Khan, K. A., Pruthi, V., & Al-Waili, N. (2015). Biosurfactant Production by Pseudomonas Aeruginosa DSVP20 Isolated from Petroleum Hydrocarbon-Contaminated Soil and Its Physicochemical Characterization. Environmental Science and Pollution Research, 22 (22), 17636–1763643
Soediono, B. (2008). Isolasi dan identifikasi bakteri pendegradasi lipid. Journal of Chemical Information and Modeling, 53(2), 122 - 27.
Sopiah, N., Oktaviani, A. N., Sulistia, S., Suciati, F., & Aviantara, D. B. (2011). Isolasi dan identifikasi bakteri pendegradasi hidrokarbon yang berasal dari tanah tercemar minyak bumi. Jurnal Teknologi Lingkungan, 12(3), 291 - 98.
Suwito, W. (2010). Bakteri yang sering mencemari susu: Deteksi, patogenesis, epidemiologi, dan cara pengendaliannya. Jurnal Litbang Pertanian, 29(3), 96 - 100.
Tarangini, K. (2009). Biosorption of heavy metals using individual and mixed cultures of Pseudomonas aeruginosa and Bacillus subtilis. Defence Life Science Journal, 2(4), 442 - 47.
Vrieze, A., Holleman, F., Zoetendal, E. G., De Vos, W. M., Hoekstra, J. B. L., & Nieuwdorp, M. (2010). The environment within: How gut microbiota may influence metabolism and body composition. Diabetologia, 53(4), 606 - 13.
Xu, L., Mingfang, L., Jiang, C., Wei, X., Kong, P., Liang, X., Zhao, J., Yang, L., & Liu, H. (2012). In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter Phragmitetus LSSE-09 under aerobic and anaerobic conditions. Applied Biochemistry and Biotechnology, 166(4), 933 - 41.
Yadav, S., Kaushik, R., Saxena, A. K., & Arora, D. K. (2011). Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. Journal of Basic Microbiology, 51(1), 98 - 106.
Yu, X., Jiang, Y., Huang, H., Shi, J., Wu, K., Zhang, P., & Jianguo, L. (2016). Simultaneousaerobic denitrification and Cr(VI) reduction by Pseudomonas brassicacearum LZ-4 in wastewater. Bioresource Technology, 2(21), 121 -129.