The Study of Faustmann Formula Application in Sustainable Natural Forest Management in Indonesia

Isi Artikel Utama

Yonky Indrajaya Yonky

Abstrak

In the forest economics literature, Faustmann formula is highly adopted for profit maximization problem in forest management, mostly in plantation forest. Stylized models of Faustmann formula to be applied in selective logging regime have also been studied extensively in multi-age and multi-species forest. In general, natural forest managers in Indonesia have not adopted the Faustmann formula in their management decisions. Sustainability aspect in natural forest management is applied based on silvicultural consideration, i.e. measuring residual stand that is able to be harvested in the next cutting cycle. This study aims to analyze the application of Faustmann formula in the current selective logging regime in Indonesia (i.e. TPTI), so that the natural forest managers may gain maximum profit and sustainable. This study is a qualitative research based on literature review. The results of this study show that under deterministic growth model (i.e. matrix transition model) and robust damage model (i.e. transition matrix with different damage proportions on each species and diameter class), the Faustmann formula can be applied for selective Logging regime in Indonesia.

Rincian Artikel

Yonky , Y. I. (2018). The Study of Faustmann Formula Application in Sustainable Natural Forest Management in Indonesia. Jurnal Wasian, 5(1), 57-65. https://doi.org/10.62142/0wktcp40
Articles

Amacher, G. S., Ollikainen, M., & Koskela, E. (2009). Economics of forest resources. Cambridge, Mass.: MIT Press.

Bettinger, P., Boston, K., Siry, J. P., & Grebner, D. L. (2017). Forest management and planning. Second Edition. Burlington USA: Academic Press.

Boscolo, M., & Buongiorno, J. (1997). Managing a tropical rainforest for timber, carbon storage and tree diversity. Commonwealth Forestry Review, 76(4), 246-254.

Buongiorno, J., Holvorsen, E. A., Bollandsas, O. M., Gobakken, T., & Hofstad, O. (2012). Optimizing management regimes for carbon storage and other benefits in uneven-aged stands dominated by Norway spruce, with a derivation of the economic supply of carbon storage. Scandinavian Journal of Forest Research, 27(5), 1-14.

Buongiorno, J., & Michie, B. R. (1980). A Matrix model of uneven-aged forest management. Forest Science, 26(4), 609-625.

Cairns, R. D. (2017). Faustmann's formulas for forests. Natural Resource Modeling, 30(1), 52-73.

Chang, S. J. (2018a). Forest property taxation under the generalized Faustmann formula. Forest Policy and Economics, 88, 38-45.

Chang, S. J. (2018b). Forest valuation under the generalized Faustmann formula with taxation. Forest Policy and Economics, 88, 46-51.

da Silva, D. A., Piazza, G., Fantini, A. C., & Vibrans, A. C. (2018). Forest management in a secondary Atlantic Rainforest: assessing the harvest damage. Advances in Forestry Science, 4(4), 187-193.

Diaz-Balteiro, L., & Rodríguez, L. C. E. (2017). Influence of carbon sequestration in an optimal set of coppice rotations for eucalyptus plantations. In F. Bravo, V. LeMay, & R. Jandl (Eds.), Managing Forest Ecosystems: The Challenge of Climate Change (pp. 187-204). Cham: Springer International Publishing.

Enggelina, A. (1998). Volume equation. In J.-G. Bertault & K. Kadir (Eds.), Silvicultural research in a lowland mixed dipterocarp forest of East Kalimantan: the contribution of STREK project: CIRAD-forêt.

Galinato, G. I., & Uchida, S. (2011). The Effect of temporary certified emission reductions on forest rotations and carbon supply. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, 59(1), 145-164. doi:10.1111/j.1744-7976.2010.01203.x

Hoel, M., Holtsmark, B., & Holtsmark, K. (2014). Faustmann and the climate. Journal of Forest Economics, 20(2), 192-210.

Hurttala, H., Cao, T., & Valsta, L. (2017). Optimization of scots pine (Pinus sylvestris) management with the total net return from the value chain. Journal of Forest Economics, 28, 1-11. doi:http://dx.doi.org/10.1016/j.jfe.2017.04.001

Indrajaya, Y. (2013). Penentuan daur optimal hutan tanaman sengon (Paraserianthes falcataria (L.) Nielsen) dengan metode Faustmann. Jurnal Penelitian Agroforestry, 1(1), 31-40.

Indrajaya, Y. (2015). Perbandingan model kerusakan tegakan tinggal di hutan alam dipterocarp untuk mendukung mekanisme REDD+. Jurnal Penelitian Ekosistem Dipterokarpa, 1(1).

Indrajaya, Y. (2016). Daur optimal hutan rakyat manglid di Kecamatan Kawalu, Tasikmalaya, Jawa Barat. dalam M. Siarudin, A. Sudomo, Y. Indrajaya, T. Puspitojati, & N. Mindawati (Eds.), Hutan rakyat manglid: Status riset dan pengembangan. Bogor, Indonesia: FORDA PRESS.

Indrajaya, Y., & Siarudin, M. (2013). Daur finansial hutan rakyat jabon di Kecamatan Pakenjeng, Kabupaten Garut, Jawa Barat. Jurnal Penelitian Hutan Tanaman, 10(4).

Indrajaya, Y., & Siarudin, M. (2015a). Daur tebang optimal hutan rakyat gmelina (Gmelina arborea Roxb.)di Tasikmalaya dan Banjar, Jawa Barat, Indonesia. Jurnal Penelitian Sosial Ekonomi Kehutanan, 12(2), 109-116.

Indrajaya, Y., & Siarudin, M. (2015b). Pengaturan hasil agroforestry jabon (Neolamarckia cadamba Miq.) dan kapulaga di Kecamatan Pakenjeng, Garut, Jawa Barat. Jurnal Penelitian Sosial Ekonomi Kehutanan, 12(2), 117-125.

Indrajaya, Y., & Sudomo, A. (2013). Analisis finansial agroforestry sengon dan kapulaga di Desa Payungagung, Kecamatan Panumbangan, Ciamis. Jurnal Penelitian Agroforestry, 1(2), 123-132.

Indrajaya, Y., van der Werf, E., van Ierland, E., Mohren, F., & Weikard, H.-P. (2016). The Potential of REDD+ for carbon sequestration in tropical forests: Supply Curves for carbon storage for East-Kalimantan. Forest Policy and Economics, 71, 1-10.

Ingram, C. D., & Buongiorno, J. (1996). Income and diversity tradeoffs from management mixed lowland dipterocarps in Malaysia. Journal of Tropical Forest Science, 9(2), 242-270.

Kementerian Kehutanan. (2009). Peraturan Menteri Kehutanan Nomor: P.11/Menhut-II/2009 tentang Sistem silvikultur dalam areal izin usaha pemanfaatan hasil hutan kayu pada hutan produksi, Nomor:P.11/Menhut-II/2009 C.F.R. (2009).

Krisnawati, H., Suhendang, E., & Parthama, I. P. (2008). Transition matrix growth models for logged over natural forest in Central Kalimantan. Jurnal Penelitian Hutan dan Konservasi Alam, 5(2), 107-128.

Lee, J., McKenney, D., Pedlar, J., & Arain, M. (2017). Biophysical and economic analysis of black spruce regeneration in Eastern Canada using global climate model productivity outputs. Forests, 8(4), 106.

Macpherson, A. J., Schulze, M. D., Carter, D. R., & Vidal, E. (2010). A Model for comparing reduced impact logging with conventional logging for an Eastern Amazonian Forest. Forest Ecology and Management, 260(11), 2002-2011. doi:DOI 10.1016/j.foreco.2010.08.050

Martin, P. A., Newton, A. C., Pfeifer, M., Khoo, M., & Bullock, J. M. (2015). Impacts of tropical selective logging on carbon storage and tree species richness: A meta-analysis. Forest Ecology and Management, 356, 224-233.

Mendoza, G. A., Onal, H., & Soetjipto, W. (2000). Optimising tree diversity and economc returns from managed mixed forest in Kalimantan, Indonesia. Journal of Tropical Forest Science, 12(2), 298-319.

Mendoza, G. A., & Setyarso, A. (1986). A transition matrix forest growth-model for evaluating alternative harvesting schemes in Indonesia. Forest Ecology and Management, 15(3), 219-228. doi:Doi 10.1016/0378-1127(86)90068-X

Nakajima, T., Shiraishi, N., Kanomata, H., & Matsumoto, M. (2017). A method to maximise forest profitability through optimal rotation period selection under various economic, site and silvicultural conditions. New Zealand Journal of Forestry Science, 47(1), 4. doi:10.1186/s40490-016-0079-6

Navarrete, E. (2012). Modeling optimal pine stands harvest under stochastic wood stock and price in Chile. Forest policy and economics, 15, 54-59.

Olschewski, R., & Benitez, P. C. (2010). Optimizing joint production of timber and carbon sequestration of afforestation projects. Journal of Forest Economics, 16(1), 1-10. doi:DOI 10.1016/j.jfe.2009.03.002

Perman, R., Ma, Y., McGilvray, J., & Common, M. (2003). Natural Resource and Environmental Economics. Third Edition. England: Pearson Education Limited.

Roitman, I., & Vanclay, J. K. (2015). Assessing size–class dynamics of a neotropical gallery forest with stationary models. Ecological Modelling, 297, 118-125. doi:https://doi.org/10.1016/j.ecolmodel.2014.11.009

Samuelson, P. A. (2012). Economics of forestry in an evolving society. Journal of Natural Resources Policy Research, 4(3), 173-195.

Sasaki, N., Chheng, K., & Ty, S. (2012). Managing production forests for timber production and carbon emission reductions under the REDD+ scheme. Environmental Science & Policy, 23, 35-44.

Sinha, A., Rämö, J., Malo, P., Kallio, M., & Tahvonen, O. (2017). Optimal management of naturally regenerating uneven-aged forests. European Journal of Operational Research, 256(3), 886-900.

Sist, P., Picard, N., & Gourlet-Fleury, S. (2003). Sustainable cutting cycle and yields in a lowland mixed dipterocarp forest of Borneo. Annals of Forest Science, 60(8), 803-814. doi:DOI 10.1051/forest:2003075

Susaeta, A., Chang, S. J., Carter, D. R., & Lal, P. (2014). Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States. Journal of Forest Economics, 20(1), 47-64.

Xabadia, A., & Goetz, R. U. (2010). The optimal selective logging regime and the Faustmann formula. Journal of Forest Economics, 16(1), 63-82. doi:http://dx.doi.org/10.1016/j.jfe.2009.06.002

Zhou, W., & Gao, L. (2016). The impact of carbon trade on the management of short-rotation forest plantations. Forest Policy and Economics, 62, 30-35. doi:http://dx.doi.org/10.1016/j.forpol.2015.10.008