Development and Validation of Volume Prediction Model for Balangeran (Shorea balangeran (Korth.) Burck) In Central Kalimantan
Main Article Content
Abstract
Estimation model of tree volume must be high in accuracy and precisions to estimate stand potential precisely. This paper determines and validates the estimation model of Shorea balangeran volume grown in Central Kalimantan, Indonesia. There were three phases of model development which include 52 trees for model progress, 23 trees for model validation, and 10 trees for external model validation. The calculation model used linear and non-linear models with diameter, diameter and height, and diameter and height combination as independent variables. The criteria of the best model was determined by statistical analyses such as coefficient determination, relative and aggregative deviation, bias, precisions and accuracy of estimation, AIC (Akaike’s Information Criterion). The result of the study showed that the model with diameter as single variable was not complied with the selected best model criteria (aggregative deviation; AD< 1 % and relative deviation: RD< 8 %). The addition of tree height on model estimation increased the coefficient determination of 6.54% and the model with diameter and height as independent variable was satisfied with the criteria (AD and RD criteria). The best model of Balangeran was with coefficient determination of 89.77 %. However, the best model was not applicable for other sites with different stand characteristics
Article Details
Copyright (c) 2018 Jurnal Wasian
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright and License
All articles published in Wasian Journal are the property of the authors. By submitting an article to Wasian Journal, authors agree to the following terms:
-
Copyright Ownership: The author(s) retain copyright and full publishing rights without restrictions. Authors grant the journal the right to publish the work first and to distribute it as open access under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
-
Licensing: Articles published in Wasian Journal are licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). This license allows others to share, copy, and redistribute the material in any medium or format, and adapt, remix, transform, and build upon the material for any purpose, even commercially, provided that proper credit is given to the original author(s) and the source of the material
This work is licensed under a Creative Commons Attribution 4.0 International License. -
Author's Rights: Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and greater citation of published work.
-
Third-Party Content: If your article contains material (e.g., images, tables, or figures) for which you do not hold copyright, you must obtain permission from the copyright holder to use the material in your article. This permission must include the right for you to grant the journal the rights described above.
-
Reprints and Distribution: Authors have the right to distribute the final published version of their work (e.g., post it to an institutional repository or publish it in a book), provided that the original publication in Wasian Journal is acknowledged.
For the reader you are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rightsmay limit how you use the material.
Abdurachman. (2012). Tabel volume batang di bawah pangkal tajuk pohon keruing (Dipterocarpus acutangulus) di Labanan Berau Kalimantan Timur. Jurnal Penelitian Dipterokarpa, 6(1), 31–39.
Abdurachman. (2013). Model pendugaan volume pohon Dipterocarpus Confertus V.Slotten di Wahau Kutai Timur, Kalimantan Timur. Jurnal Penelitian Dipterokarpa, 7(1), 29–34.
http://doi.org/10.1017/CBO9781107415324.004
Abdurachman, & Purwaningsih, S. (2012). Tabel volume batang di bawah pangkal tajuk jenis tengkawang (Shorea macrophylla) di PT Gunung Gajah Abadi, Kalimantan Timur. Jurnal Penelitian Dipterokarpa, 6(2), 131–139.
Arevalo, C. B. M., Volk, T. A., Bevilacqua, E., & Abrahamson, L. (2007). Development and validation of aboveground biomass estimations for four Salix clones in central New York. Biomass and Bioenergy, 31(1), 1–12.
http://doi.org/10.1016/j.biombioe.2006.06.012
Armecin, R. B., & Coseco, W. C. (2012). Abaca (Musa textilis Nee) allometry for above-ground biomass and fiber production. Biomass and Bioenergy, 46(0), 181–189. http://doi.org/10.1016/j.biombioe.2012.09.004
Ashton, P. . (1982). Dipterocarpaceae. Flora Malesiana, 9, 237–552.
Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684–1694.
http://doi.org/10.1016/j.foreco.2009.01.027
Bawa, K. (1998). Conservation of Genetic Resources in The Dipterocarpaeae. dalam S. Appanah & JM Turnbull (Eds.), A Review of Dipterocarps, Taxonomy, Ecology and Silviculture (pp. 45–56). Bogor: CIFOR.
Bitterlich, W. (n.d.). The Spiegel-Relascop [manual] (1 st). Salzburg-Austria.
Blujdea, V. N. B., Pilli, R., Dutca, I., Ciuvat, L., & Abrudan, I. V. (2012). Allometric biomass equations for young broadleaved trees in plantations in Romania. Forest Ecology and Management, 264, 172–184. http://doi.org/10.1016/j.foreco.2011.09.042
Brandeis, T. J., Delaney, M., Parresol, B. R., & Royer, L. (2006). Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume. Forest Ecology and Management, 233(1), 133–142. http://doi.org/10.1016/j.foreco.2006.06.012
Brassard, B. W., Chen, H. Y. H., Bergeron, Y., & Paré, D. (2011). Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario, Canada. Biomass and Bioenergy, 35(10), 4189–4196. http://doi.org/10.1016/j.biombioe.2011.06.045
Brooks, J. R., Jiang, L., & Ozçelik, R. (2008). Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management, 256(1–2), 147–151. http://doi.org/10.1016/j.foreco.2008.04.018
Fayolle, A., Doucet, J. L., Gillet, J. F., Bourland, N., & Lejeune, P. (2013). Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management, 305, 29–37.
http://doi.org/10.1016/j.foreco.2013.05.036
Giday, K., Eshete, G., Barklund, P., Aertsen, W., & Muys, B. (2013). Wood biomass functions for Acacia abyssinica trees and shrubs and implications for provision of ecosystem services in a community managed exclosure in Tigray, Ethiopia. Journal of Arid Environments, 94, 80–86.
Graza, A. A. (1989). Econometric Model Selection: A New Approach. (J. P. Ancot, A. J. H. Hallet, F. G. Adams, P. Balestra, M. G. Dagenais, D. Kendrick, … W. Welfe, Eds.) (1st ed.). Kluwer Academic Publishers.
Hayne, K. (1987). Tumbuhan Berguna Indonesia (III). Badan Penelitian dan Pengembangan Kehutanan. Departemen Kehutanan.
Herbagung, & Krisnawati, H. (2009). Model taper batang tanaman Khaya anthotheca C.Dc. di Hutan Penelitian Pasir Hantap, Sukabumi, Jawa Barat. Jurnal Penelitian Hutan Dan Konservasi Alam, VI(1), 13–24.
Hilwan, I., Setiadi, Y., & Rachman, H. (2013). Evaluasi pertumbuhan beberapa jenis dipterokarpa di areal revegetasi PT. Kitadin, Kalimantan Timur. Jurnal Silvikuktur Tropika, 4(2), 108–112.
Huang, S., Yang, Y., & Wang, Y. (2003). A Critical Look at procedures for validating growth and yield models. in A. Amaro, D. Reed, & P. Soares (eds.), Modelling Forest System (1st ed., p. 416). CABI Publishing. http://doi.org/10.1093/forestry/cpi037
Hunter, J. T. (2015). Changes in allometric attributes and biomass of forests and woodlands across an altitudinal and rainfall gradient: What are the implications of increasing seasonality due to anthropogenic climate change?. International Journal of Ecology, 2015, 1–10.
http://doi.org/10.1155/2015/208975
Husch, B. (1963). Forest Mensuration and Statistics. New York: The Ronald Press Company.
Husch, B., Beers, T. W., & Kershaw, J. (2002). Forest Mensuration (Fourth). New Jersey: Jhon Wiley and Sons, Inc. Hoboken.
Istomo, & Farida, N. E. (2017). Potensi simpanan karbon di atas permukaan tanah tegakan Acacia nilotica L . ( Willd ) ex . Del . di Taman Nasional Baluran , Jawa Timur. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 7(2), 155–162.
http://doi.org/10.19081/jpsl.2017.7.2.155
Jagodziński, A. M., Dyderski, M. K., Gęsikiewicz, K., Horodecki, P., Cysewska, A., Wierczyńska, S., & Maciejczyk, K. (2018). How do tree stand parameters affect young Scots pine biomass? – Allometric equations and biomass conversion and expansion factors. Forest Ecology and Management, 409(October 2017), 74–83.
http://doi.org/10.1016/j.foreco.2017.11.001
Juliantari, F. (2013). Angka Bentuk dan Model Volume Puspa (Schima wallichii (DC.) Korth) di Hutan Pendidikan Gunung Walat. Bogor: Institut Pertanian Bogor.
Krisnawati, H. (2016). A Compatible estimation model of stem volume and taper for Acacia mangium Willd . plantations. Indonesia Journal of Forestry Research, 3(1), 49–64.
Kuswandi, R. (2016). Model Penduga Volume Pohon Kelompok Jenis Komersial Pada Wilayah Kabupaten Sarmi, Papua Timber Volume Estimation Model for Merchantable Tree Species in Sarmi Regency, Papua, 91–96.
http://doi.org/10.1016/j.jaridenv.2013.03.001
Laar, A. Van, & A. Akca. (1997). Forest Mensuration. Gottingen.: Cuvillier Verlag.
Lima, A. J. N., Suwa, R., De Mello Ribeiro, G. H. P., Kajimoto, T., Dos Santos, J., Da Silva, R. P., … Higuchi, N. (2012). Allometric models for estimating above- and below-ground biomass in Amazonian forests at Sao Gabriel da Cachoeira in the upper Rio Negro, Brazil. Forest Ecology and Management, 277, 163–172.
http://doi.org/10.1016/j.foreco.2012.04.028
Manuri, S., Brack, C., Nugroho, N. P., Hergoualc’h, K., Novita, N., Dotzauer, H., … Widyasari, E. (2014). Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. Forest Ecology and Management, 334, 241–253.
http://doi.org/10.1016/j.foreco.2014.08.031
Maulana, S. I. (2014). Allometric equations for estimating above-ground biomass in Papua Tropical Forest. Indonesian Journal of Forestry Research, 1(2), 77–88.
http://doi.org/10.20886/ijfr.2014.1.2.77-88
Maulana, S. I., & Pandu, P. . J. (2011). Pendugaan total biomassa atas tanah pada Genera Pometia di Kawasan Hutan Tropis Papua. Jurnal Analisis Kebijakan Kehutanan Penelitian Sosial Dan Ekonomi Kehutanan, 8(4), 288–298.
Maulana, S. I., Wibisono, Y., & Utomo, S. (2016). Development of local allometric equation to estimate total aboveground biomass in Papua. Indonesian Journal of Forestry Research, 3(2), 107–118.
http://doi.org/DOI: http://dx.doi.org/10.20886/ijfr.2016.3.2.107-118
Menéndez-Miguélez, M., Canga, E., Álvarez-Álvarez, P., & Majada, J. (2014). Stem taper function for sweet chestnut (Castanea sativa Mill.) coppice stands in northwest Spain. Annals of Forest Science, 71(7), 761–770.
http://doi.org/10.1007/s13595-014-0372-6
Mugasha, W. A., Eid, T., Bollandsas, O. M., Malimbwi, R. E., Chamshama, S. A. O., Zahabu, E., & Katani, J. Z. (2013). Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecology and Management, 310, 87–101.
http://doi.org/10.1016/j.foreco.2013.08.003
Naiem, M., Widyatno, & Al-Fauzi, M. Z. (2014). Progeny test of Shorea leprosula as key point to increase productivity of secondary forest in PT Balik Papan Forest Industries, East Kalimantan, Indonesia. Procedia Environmental Sciences, 20, 816–822.
http://doi.org/10.1016/j.proenv.2014.03.099
Naito, Y., Kanzaki, M., Iwata, H., Obayashi, K., Lee, S. L., Muhammad, N., … Tsumura, Y. (2008). Density-dependent selfing and its effects on seed performance in a tropical canopy tree species, Shorea acuminata (Dipterocarpaceae). Forest Ecology and Management, 256(3), 375–383. http://doi.org/10.1016/j.foreco.2008.04.031
Ngomanda, A., Engone Obiang, N. L., Lebamba, J., Moundounga Mavouroulou, Q., Gomat, H., Mankou, G. S., … Picard, N. (2014). Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest? Forest Ecology and Management, 312, 1–9.
http://doi.org/10.1016/j.foreco.2013.10.029
Nugroho, N. P. (2014). Developing Site-Specific Allometric Equations for above-ground biomass estimation in peat swamp forests of Rokan Hilir District , Riau Province , Indonesia. Indonesian Journal of Forestry Research, 1(1), 47–66.
http://doi.org/10.20886/ijfr.2014.1.1.47-65
Puspitasari, D. (2015). Angka Bentuk dan Model Volume Kayu Afrika (Maesopsis eminii Engl) di Hutan Pendidikan Gunung Walat, Sukabumi, Jawa Barat. Bogor: Institut Pertanian Bogor.
Qirom, M. A., & Lazuardi, D. (2007). Model persamaan linear untuk penduga volume pohon hutan tanaman jenis Mangium di Kalimantan Selatan. Jurnal Penelitian Hutan Tanaman, 4(3), 119–138.
Qirom, M. A., & Supriyadi. (2012a). Evaluasi dan Penyusunan Model Prediksi Pertumbuhan dan Hasil Jenis Jelutung Rawa dan Nyawai. Banjarbaru.
Qirom, M. A., & Supriyadi. (2012b). Penyusunan model Penduga volume pohon jenis jelutung rawa (Dyera polyphylla (Miq)V. Steenis). Jurnal Penelitian Hutan Tanaman, 9(3), 141–153.
Qirom, M. A., & Supriyadi. (2013). Model penduga volume pohon nyawai (Ficus variegata Blume) di Kalimantan Timur. Jurnal Penelitian Hutan Tanaman, 10(4), 173–184.
Sahuri. (2017). Model pendugaan volume pohon karet saat peremajaan di Sembawa, Sumatera Selatan. Jurnal Penelitian Hutan Tanaman, 14(2), 129–143.
Sharma, M., Oderwald, R. G., & Amateis, R. L. (2002). A consistent system of equations for tree and stand volume. Forest Ecology and Management, 165(1–3), 183–191.
http://doi.org/10.1016/S0378-1127(01)00616-8
Siarudin, M., & Indrajaya, Y. (2014). Persamaan allometrik jabon (Neolamarckia cadamba Miq) untuk pendugaan biomassa di atas tanah pada Hutan Rakyat Kecamatan Pakenjeng Kabupaten Garut. Jurnal Penelitian Hutan Tanaman, 11(1), 1–9.
Siregar, C. A., & Dharmawan, I. W. S. (2011). Stok karbon tegakan hutan alam dipterokarpa di pt. sarpatim, kalimantan tengah. Journal Penelitian Hutan Dan Konservasi Alam, 8(4), 337–348.
Subedi, M. R., & Sharma, R. P. (2012). Allometric biomass models for bark of Cinnamomum tamala in mid-hill of Nepal. Biomass and Bioenergy, 47, 44–49. http://doi.org/10.1016/j.biombioe.2012.10.006
Suchomel, C., Pyttel, P., Becker, G., & Bauhus, J. (2012). Biomass equations for sessile oak (Quercus petraea (Matt.) Liebl.) and hornbeam (Carpinus betulus L.) in aged coppiced forests in southwest Germany. Biomass and Bioenergy, 46(0), 722–730. http://doi.org/10.1016/j.biombioe.2012.06.021
Sumadi, A., Nugroho, A. W., & Rahman, T. (2010). Model penduga volume pohon pulai gading di Kabupaten Musi Rawas – Sumatera Selatan. Jurnal Penelitian Hutan Tanaman, 7(2), 107–112.
Sumadi, A., & Siahaan, H. (2010). Model penduga volume pohon kayu bawang (Disoxylum molliscimum Burm F) di Provinsi Bengkulu. Jurnal Penelitian Hutan Tanaman, 7(5), 227–231.
Susila, I. W. W. (2012). Model dugaan volume dan riap tegakan jati (Tectona grandis L.F) di Nusa Penida, Klungkung Bali. Jurnal Penelitian Hutan Tanaman, 9(3), 165–178.
Sutaryo, D. (2009). Penghitungan Biomassa: Sebuah pengantar untuk studi karbon dan perdagangan karbon. Bogor: Wetland International Indonesia Programme.
Tewari, V. P., & Singh, B. (2006). Total and merchantable wood volume equations for Eucalyptus hybrid trees in Gujarat State, India. Arid Land Research and Management, 20(2), 147–159.
http://doi.org/Doi 10.1080/15324980500546015
Tewari, V. P., & Singh, B. (2008). Potential density and basal area prediction equations for unthinned Eucalyptus hybrid plantations in the Gujarat state of India. Bioresource Technology, 99(6), 1642–1649. http://doi.org/10.1016/j.biortech.2007.04.004
Turjaman, M., Santoso, E., Susanto, A., Gaman, S., Limin, S. H., Tamai, Y., … Tawaraya, K. (2011). Ectomycorrhizal fungi promote growth of Shorea balangeran in degraded peat swamp forests. Wetlands Ecology and Management, 19(4), 331–339. http://doi.org/10.1007/s11273-011-9219-1
Turski, M., Beker, C., Kazmierczak, K., & Najgrakowski, T. (2008). Allometric equations for estimating the mass and volume of fresh assimilational apparatus of standing scots pine (Pinus sylvestris L.) trees. Forest Ecology and Management, 255(7), 2678–2687. http://doi.org/10.1016/j.foreco.2008.01.028
Ubuy, M. H., Eid, T., Bollandsås, O. M., & Birhane, E. (2018). Above ground biomass models for trees and shrubs of exclosures in the drylands of Tigray, northern Ethiopia. Journal of Arid Environments, 156(February), 9–18.
http://doi.org/10.1016/j.jaridenv.2018.05.007
Widyasari, N. A. E. K., Saharjo, B. H., Solichin, & Istomo. (2010). Pendugaan biomassa dan potensi karbon terikat di atas permukaan tanah pada hutan rawa gambut di su. Ilmu Pertanian Indonesia, 15(1), 41–49.
Yuniati, D., & Kurniawan, H. (2013). Pendugaan simpanan karbon dalam mendukung upaya konservasi savana Corypha utan (Biomass and carbon allometric equation for estimating carbon stock to support Corypha utan savanna conservation). Jurnal Penelitian Sosial dan Ekonomi Kehutanan, 10(2), 75–84.
Zewdie, M., Olsson, M., & Verwijst, T. (2009). Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass and Bioenergy, 33(3), 421–428. http://doi.org/10.1016/j.biombioe.2008.08.007